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Abstract. A Green's function-integral equation technique is used to obtain a 
numerical solution to the two-dimensional Dirichlet problem for the multiply con- 
nected region between the ground lines (V = 0) at y = 0 and y = 1 and exterior to 
the N circular conductors with arbitrarily spaced centers (xi, yi) and radii R1, i = 

1, 2, ***, N. If the smallest distance between each pair of conducting surfaces ex- 
ceeds .1, the capacitance matrix for this system of N conductors can be calculated to 
6-place accuracy at a cost of about 15 N2 seconds on the IBM 7044 computer.* 
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FIGURE 1. A System of N = 2 Circular Condudors 

1. The Problem. A two-dimensional system of nonintersecting circular con- 
ductors is located in the strip between y = 0 and y = 1 with the ith conductor 
having radius Ri and center (xi, yi), i = 1, 2, * , N. It is supposed that none of 
the conductors intersects the ground lines at y = 0 and y = 1. We wish to find a 
function V(x, y) such that 

-o < x < 00 

(1) V2V(x,y)=0 for 4<y<i, 
t(X _Xi)2 + (y-yi)2 > Ri2 i = 1, 2, ...,yN 

(2) V(x,y)=0 fory=Oandy=1, 

V(x, y) 0 as x - oo , 

(3) V(x, y) =Vi for (x-_xi)2 + (y _yi)2 < R i2 i?, 1 2 -N. 
Problems of a similar nature have been considered by Knight [1], Craggs [2], and 
Cristal [3]. We would also like to calculate the elements of the capacitance matrix 

GCij} (which is independent of the boundary conditions of Eq. (3)) such that if 

Qicl dl 
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is the charge (in MKS units) on the ith conductor, then 

N 

(4) Qi =ECijVj. 
j=1j 

(The constant e is the electrical permittivity constant.) We may obtain the jth 
column of this matrix by noting that Qt = Cij for the special case where the bound- 
ary conditions of Eq. (3) are chosen such that Vi = bij where bij is the Dirac delta 
function. 

2. The Corresponding Integral Equation. In the usual manner we may convert 
the above Dirichlet problem to an integral equation [4]. Accordingly let o-(O) be the 
angular charge density, i.e. - e Ri times the outward normal derivative of V(x, y), 
at the angular coordinate 0 on the surface of the ith conductor. (Here 0 is measured 
counterclockwise from the ray drawn from (xi, y ) to (+ oo, y ).) Then we have 

N 21r 

(5) V(x, y) = E f G(x, y; xi + Ri cos 0, yi + Ri sin0)oi(0)d0 
i=1 0=0 

where 

-1 coshwr(x- x')- Cosr(y - y') 
(6) G(x, y; x', y') = - log cosh 7r(x - x) - csr(y?y') 

4rc- cosh 7r(X- x')- cos 7r (y + y') 

is the Green's function for the region between the ground lines [5], i.e. G(x, y; x', y') 
is the potential at the point (x, y) due to a unit charge at the point (x', y') in the 
presence of the ground lines at y = 0, y = 1. By construction the V(x, y) of Eq. (5) 
satisfies Eq. (1) and the boundary conditions of Eq. (2) for any choice of the func- 
tions oi(0); we shall select the latter in such a way as to insure that the boundary 
conditions of Eq. (3) are also satisfied. The boundary conditions of Eq. (3) and the 
integral relation of Eq. (5) imply that the functions cri(0) have continuous deriva- 
tives of all orders, and consequently we expect the Fourier series 

00 

(7) o'i(0) = aio + E [aim cos mo + bim sin mO] 
m=l 

to converge rapidly. After substituting Eq. (7) into Eq. (5) and interchanging the 
summation and integration processes, we obtain 

N (l 

V(x, y) = E laioAo(x, y; xi, yi) 
(8) 00Y 

+ ZR.NaimAm(x, y; xi, yi) + bimB.(x, y; xi yi)], m=l 

where 
r27 

A(x, y; xo, yo) =R0 G (x, y; xo + R cos 0, yo + R sin 0) cos mOdO, 

(9) 2r 

Bm(x, y; xo, yo) Rm f (x, y; xo + R cos 0, yo + R sin 0) sin mOdO. 

(It will be seen later that the functions Am, Bm as defined here are independent of R 
for R > 0.) It will be noted that each of the functions Am(x, y; xo, yo), m = 0, 1, 
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2, ... and Bm,f(x, y; xo, yo), m = 1, 2, 3, ... satisfies the boundary conditions of 
Eq. (2), and each satisfies Laplace's equation at any point (x, y) with 0 < y < 1 
and (x, y) 5 (xO, yo). 

3. Numerical Determination of aim, bim. Upon truncating the infinite series of 
Eq. (8) we obtain the Mth order approximation 

N 

VM) (x, y) = 4{a(mAo(x, y; xi ,yi) 
(10) M; ) 

+ E Rim[atm)Am(x, y; Xi, yi) + b02) (x y; xi y,i) m=l 
so that V(M) is a finite linear combination of the functions Am, Bm and therefore 
satisfies the boundary conditions of Eq. (2) and satisfies Laplace's equation every- 
where in the strip 0 < y < 1 except at the points (xi, yi), i = 1, 2, ***, N. We shall 
force VWM) to satisfy approximately the remaining boundary conditions of Eq. (3) 
by choosing the Fourier coefficients a a'), b (m) such that 

N 4M 

(11) E E {V M(Xik, Yik) - Vi= Minimum, 
i=1 k=l1 

where 

Xik = xi + R cos (kir/2M), 
(12) i = 122 **IN; k= 1 222 ** 4M, 

Yik = Yi + Ri sin (kir/2M), 
is a set of equally spaced test points chosen on the surfaces of the N conductors. 
The least squares condition of Eq. (11) gives rise to a system of N * (2M + 1) linear 
equations in the N (2M + 1) unlnowns a m) b (m) which are thereby determined. 
A total of 4NM test points is specified by Eq. (12), since the use of approximately 
twice as many test points as unknown Fourier coefficients makes a near optimum 
use of the smoothing effect of the least squares process. 

Numerically this computational procedure has been found to be very stable, 
and as M - oo the Mth order potential function VWM) rapidly converges to the 
solution of the Dirichlet problem of Eqs. (1)-(3). Likewise, the Mth order charge 
densities ai(m) converge to their limiting forms ai, thus satisfying the integral equa- 
tion associated with the Dirichlet problem. The Mth order estimate of the charge 
on the ith conductor is given by the integral of 0i(m), i.e. 

Q7 (M M (M Q,(M) = f|T {a(o) + E [a( ) cos mO + b04$f sin mOIIdO = 2raio 

and by using the boundary conditions Vi = b j we may thereby obtain an Mth order 
estimate of the (i, j)-element of the capacitance matrix of Eq. (4). 

The extent to which the approximate potential function V(M) satisfies the 
boundary condition of Eq. (3) on the selected test points (Xik, Yik) gives a good 
indication of the degree of convergence attained for a particular value of M. An- 
other useful test of convergence may be used when the complete capacitance matrix 
of Eq. (4) is to be determined for a system of N _ 2 conductors. The exact matrix is 
symmetric [6], and the extent to which CijF) agrees with C5rY), i 5 j = 1, 2, * *, N 
gives a good indication of the accuracy of the Mth order estimates. 

To give some idea of the convergence, it will be noted that if the smallest distance 
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between any pair of conducting surfaces (ground lines or circular conductors) ex- 
ceeds about .1, then the use of M = 6 will give approximations to V(x, y), ai(O), and 
Qi, i = 1, 2, ** *, N which are all accurate to about 6 decimal places. When one of 
the circular conductors is closer than about .1 to one of the ground planes or to 
another circular conductor having a different boundary condition, then the corre- 
sponding exact charge density crj(O) will be quite peaked and therefore a greater 
number of terms of the Fourier series will be needed to obtain a 6-place approxima- 
tion to ar(O). This in turn requires the use of a correspondingly larger M to obtain 
6-place approximations to V(x, y) and the charges Qi, i = 1, 2, * , N. 

4. Numerical Evaluation of Am, Bm. The preceding analysis requires the de- 
termination of each of the functions A., Bm, m = 0, 1, 2, ***, M, at each of the 
4N2M arguments (Xik, Yik; Xi, yj), i, j = 1,2, *, N; k = 1,2, * ..., 4M in order 
to determine the N(2M + 1) Fourier coefficients a() b(m). In addition these func- 
tions must be evaluated at the N arguments (x, y; xi, y ), i = 1, 2, * , N whenever 
the potential VM)(x, y) is calculated. The integral forms given in Eq. (9) are un- 
suitable for numerical computation, and consequently a more expeditious means for 
numerically evaluating Am, Bm will now be presented. 

We first note that the Green's function of Eq. (6) can be written in the form [5] 

1 0 
(X-_X')2 +(y-_y - 2n)2 G(x, y; x', y') = X log ( X,)2 + (y + y 2' irE=-00 (-x)2+y+y'- 2n) 

The two terms of the summation corresponding to n and -n, taken together, give 
the expression 

(X _ 
-X)2 + (y - y'- 2n)2][(x - X)2 + (y - y' + 2n)2] 

'[(X-XI)2 + (y + y'-2n)2][(x-X')2 + (y +y'2n)2] 

+ (X X + ( - Y')) 2][ + (Z- x' _( - y ))2] 

=log2 
2 

+ (x - XI + i(y + yi))2][ + (x- x' - i(y + YI))2] 

[ + ( ~2n ) [+( 2n ) 

-E~ (-1) Ck(X, y;x',yI) 
k=1 k (2n)2k 

where 

Ck(x, y; x', y') = [(X - X') + i(y + yI)]2k + [(X - X') - i(y + yj)]2k 

[(X X') + i(y- y,)]- [(X - X') - (y- yI)f2k 

Since 0 < y, y' < 1, a sufficient condition for the absolute convergence of the series 
is that (x - x')2 < 4(n2 -1). Thus for (x - x')2 < 140 we have 

G(x,y;',y')= 1 (x -x') + (y -y' -2n)2 
(13) 

47c (X -t = _ o ( 2 + (y + y, 
- 2n 2 

+ a akCk(X, y; X', y') 
k=1 

where 
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(14) ak = Ik4k 2 

can be computed from the Riemann Zeta Function or the Bernoulli numbers [7]. 
We may bound the kth term of the remaining infinite series by 

kakCk(x, y; x', y')| < 4[(x - x')2 + 4]klcaki 

4 {(x x) +4 }k{ (6) 2k} 

<26.2/(x - x')2 + 4k 

,k 144 ) 
so that for x - x'l < 3 the use of terms through k = 10 in Eq. (13) will give the 
Green's function to better than 10-place accuracy. We shall use this form of the 
Green's function to evaluate the integrals of Eq. (9). 

Using [8] with a bit of reduction we obtain 

2-r 

J2log [(x - xo - R cos0)2 + (y 4 yo + Rsin - 2n)2] cosm6d6 

T2irlog [(x-xo)2 + (y 4 yo-2n)2] form = O 

Rm cos {m Arctan [(y yo- 2n)/ (x - xo)} -4-27r ~~~~~~~form= 1,2,3,** m [(x - xO)2 + (y yo -2n)2]m/2 

and 

2r2 
f log [(x - xo -R cos 0)2 + (y ? yo ? R sin 0- 2n)2] sin mOdO 

Rm sin {m Arctan [ (y yo - 2n)/ (x-X form 
m [(X-XO)2 + (y A= yo-2n)2]m/2 form =1 2, 37 

Since 

Ck(x, y; xo + R cos 6, yo + R sin 0) 

[(x - xo) + i((y + Yo) - Re- ]2k + [(x _ X0) i(y + Yo) - Re iO]k 

- [ (x - xo) + i (y - yo) - Re ]2k - [(x - xo) - i(y - Yo) - Re i]2k 

we also have 

J Ck(x, y; xo + R cos 0, yo + R sin 6)eimado 

- ~(R)m(2) 2k-mn 2k -m)(-X)r {yyt-(o-y' 2 
(( m ) 

7 
i- (X 

X 
) )2--I y +Y y )I 

giving both the sin mO and cos mO integrals of Ck. Upon combining the above results, 
we obtain the final forms 

-1 cosh7r (x - xo) - cos r (y - yo) (15) Ao(x, y; Xo, Yo) = -u-2 logcosh r(x - xo) - cos r(y + yo) 
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A fcos m Arctan [(y - yo- 2n)/(x - xo)] 

A(X yXo 2MY 
E n=_5 5 [(x - 

Xo)2 + (y - yo - 2n) 

cos m Arctan [(y + yo - 2n)/(x -x xo) 

(16) [(x - 
xO)2 

+ (y + yo -2n) 

2e k-_1 M m 1=0(2)2k-m ( - ) 

X (xo - x)k { (Yo + y)I - (yo - Y) 

form = 1,2,3, * , 

1+5 Jsin m Arctan [(y - yo - 2n)/(x - xo)] 
Bm(x, y; xo, Y?) =2mcEsl= [(x-XO)2 + (y - yo - 2n)2]m/2 

sin m Arctan [(y + yo - 2n)/(x - xo) 

(17) [(X 
_ 

xo)2 + (y + Yo - 2n)2]m ) 

2E (1 m ( 1=1(2)2k-m I 

X (Xo X) { (yo + y) (Yo Y)} 

for m = 1, 2, 3, *.. 

These expressions are well suited to numerical computation when Ix - xol < 3 in 
which case the infinite series remaining in Eqs. (16)-(17) are rapidly convergent. 

FIGURE 2. Capacitance for a Circular Conductor Centered between Parallel Ground Lines. 

R C/E M 

.05 2.46967 1 

.10 3.39473 2 

.15 4.34868 2 

.20 5.43684 2 

.25 6.76127 4 

.30 8.48134 6 

.35 10.91395 6 

.40 14.86438 8 

.45 23.49826 12 

Note. e is the permittivity constant for the medium between the ground lines. 
For free space e = 8.85417 10-12 farad/meter (MKS) or 1/4ir (Gaussian). 

5. Cost of Computation. The calculational procedure which has been described 
provides a relatively inexpensive alternative to the finite-difference methods which 
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may also be used to solve boundary value problems of the type considered. Almost 
all of the computational time required to calculate the N2 elements of the capacitance 
matrix {C2j4 is spent evaluating the 4N2M(2M + 1) elements Am(Xik, Yik; xj, yj), 
Bm(Xik, Yik; xj, yj) which are needed for the analysis. (It will be noted that these 
arrays are independent of the boundary conditions of Eq. (3) so that once these 
arrays have been computed the solution for an arbitrary choice of V* may be ob- 
tained by solving an N2(2M + 1)th order system of linear equations.) Thus for a 
fixed M we see that the computational time is roughly proportional to N2. From 

1 1 2 
0 0 0 

C11/e 3 .39473 C11/E 0 22/- 3.88153 

C12/e =C21/e =-1.26037 

123 ~~~~~ ~1 123 

1 2 3 1 2 3 4 
000 0000 

C11/E = C44/e = 3.88184 

C11/E =C33/E = 3.88184 C22/6 = C33/c = 4.35993 

C2/ = 4.35963 C 2/e = C21/E = C34/E = C43/ = -1.24830 

C1Z = C21/e =C23/E = C32/E =-1.24832 C23/E = C32/ =-1.23651 

C 3/= C1 = -.03371 C /e = C/ = C/= = -.03304 

C14/e = C41/ = -.00188 

1 2 3 4 5 

C11/e = C55/e = 3.88184 

C22/E = C44/e = 4.35993 

C33/e = 4.36023 

C12/6 = C2 1/e = C4 5/E = C54/E = -1.24830 

C23/E C3 2/e = C34/e = C43/E = -1.23 64 9 

C13 / = C31/E = C35/e = C53/E = -.033 03 

C24/1 = C42/= -.03238 

C / = C /e = A c/e = -.00185 

C15/ 
= 

C51/e - .00011 

FIGURE 3. Capacitance Matrices for Systems of 1, 2, 3, 4, and 5 Circular Conductors 

Note. The separation of the ground lines is 1., the radius of each conductor is 
R = .1, and the center of the ith conductor is given by (xi, y*) = (.4i, .5), i = 1, 
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experience with the technique, we might note that the use of M = 6 will give 6- 
place approximations to the capacitances Cij (assuming that the conductors are 
separated by a distance of at least .1), and in this case the cost of the computation 
is about 15 N2 seconds on the IBM 7044 computer. 

6. Sample Results. The calculation of the capacitance of a single circular con- 
ductor of radius R with center at (0, .5) has been undertaken using the above 
numerical process. Figure 2 presents the capacitance as a function of R for selected 
values of R along with the value of M needed to achieve convergence to within 
?5 * 10- . These results when rounded to 4 significant figures agree precisely with 
those published by Knight [1]. The capacitance matrices for systems of 1, 2, 3, 4, 
and 5 equally spaced centered conductors having a common radius R = .1 and 
center-to-center spacing d = .4 are presented in Figure 3. 
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